More on the Airy averaging method

G.P. Arrighini, S. Bruzzone * and C. Guidotti
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56100 Pisa, Italy

Received 14 November 2002; revised 14 April 2003

Abstract

The Airy averaging method illustrated in a previous paper [J. Math. Chem. 25 (1999) 93] is a simple and effective procedure for dealing with mathematical expressions/manipulations involving Airy functions. The potentiality of the method is emphasizd through a couple of applications drawn from recent research advances in the field of the discrete variable representation (DVR) basis sets.

KEY WORDS: Airy functions, discrete variable representation, Airy averaging method

1. Introduction

In a recent paper involving two of the present authors [1], the utility of a mathematical procedure, named Airy averaging, has been illustrated by a number of simple applications. The procedure, devised by Schwinger and Englert and specifically exploited by them to bring quantum improvements in the Thomas-Fermi atomic model [2,3], turns out to be an effective, interesting approach that allows dealing with mathematical manipulations involving Airy functions [4].

The important role played by these special functions in various contexts is well documented. Semiclassical scattering theory, molecular photodissociation and predissociation, Raman scattering spectroscopy are only a few examples drawn from the less recent literature [5-10]. More recently, a number of basic developments in the discrete variable representation (DVR) field have been reported [11-14]. In particular, Airy functions have been discussed in depth as a new DVR basis set endowed with advantageous features, for instance to approach the solution of problems in quantum mechanical applications [14].

In this short paper we propose to extend farther our former review of Airy averaging applications [1]. We shall demonstrate, in particular, that some results obtained in [14] follow rather smoothly by our approach, without recourse to lengthy manipulations. Limiting ourselves to summarize only a few essential points of the Airy averaging method, we recall that the pair of linearly independent solutions of the homogeneous

[^0]differential equation (z complex variable)
\[

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y(z)}{\mathrm{d} z^{2}}-z y(z)=0, \tag{1}
\end{equation*}
$$

\]

denoted $A i(z)$ and $B i(z)$, are known as the regular and irregular Airy functions, respectively [4]. The regular Airy function admits the following integral representation,

$$
\begin{equation*}
A i(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} y \exp \left[-\mathrm{i}\left(\frac{y^{3}}{3}+x y\right)\right], \tag{2}
\end{equation*}
$$

from which one obtains in a straightforward way the Fourier transform

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x A i(x) \mathrm{e}^{\mathrm{i} y x}=\exp \left(-\mathrm{i} \frac{y^{3}}{3}\right) \tag{3}
\end{equation*}
$$

As a special case of equation (3) we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x A i(x)=1 . \tag{4}
\end{equation*}
$$

This result suggests formally the idea of a normalized Airy distribution. The Airy averaging of a given function $f(x)$ then follows immediately according to the definition

$$
\begin{equation*}
\langle f(x)\rangle_{A i} \equiv \int_{-\infty}^{\infty} \mathrm{d} x f(x) A i(x) \tag{5}
\end{equation*}
$$

As a consequence of this definition, the result of equation (3) can be expressed in the form of Airy averaging as

$$
\begin{equation*}
\langle\exp (\mathrm{i} y x)\rangle_{A i}=\exp \left(-\mathrm{i} \frac{y^{3}}{3}\right) . \tag{6}
\end{equation*}
$$

Equation (6), along with the linear nature of the Airy averaging mapping [1], constitute the basis for the following applications.

2. Applications

As a first example of the formalism just summarized, we shall consider the Airy averaging of the function $f(x)=(x-z)^{-1}$, with z arbitrary complex number,

$$
\begin{equation*}
\left\langle(x-z)^{-1}\right\rangle_{A i} \equiv \int_{-\infty}^{\infty} \mathrm{d} x \frac{A i(x)}{x-z} \tag{7}
\end{equation*}
$$

The integrand $\operatorname{Ai}(x)(x-z)^{-1}$ plays an important role in recent theoretical work concerning the Airy DVR basis set [14], a specific example in the more general discrete variable representation problematics [12]. For $z=z_{n}$, with $\left\{z_{n}\right\}$ countable sequence of roots of $A i(z)$, in fact, the functions $F_{n}(x)=(-1)^{n} \operatorname{Ai}(x)\left(x-z_{n}\right)^{-1}$ constitute an orthonormal basis, in terms of which, for example, the diagonalization of a given Hamiltonian operator can be set up.

The recourse to the simple exchange of two integration orders (a consequence of the linear nature of the Airy averaging mapping) allows re-expressing equation (7) in the form

$$
\begin{equation*}
\left\langle(x-z)^{-1}\right\rangle_{A i}=\mathrm{i} \int_{-\infty}^{0} \mathrm{~d} y \mathrm{e}^{-\mathrm{i} z y}\left\langle\mathrm{e}^{\mathrm{i} y x}\right\rangle_{A i}, \tag{8}
\end{equation*}
$$

valid when $\operatorname{Im} z>0$. From equation (6), therefore,

$$
\begin{equation*}
\left\langle(x-z)^{-1}\right\rangle_{A i}=\mathrm{i} \int_{-\infty}^{0} \mathrm{~d} y \mathrm{e}^{-\mathrm{i} z y} \mathrm{e}^{-\mathrm{i} y^{3} / 3} \tag{9}
\end{equation*}
$$

Starting from the latter result, it is a very simple exercise to verify that $\left\langle(x-z)^{-1}\right\rangle_{A i}$ satisfies the inhomogeneous Airy equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2}\left\langle(x-z)^{-1}\right\rangle_{A i}}{\mathrm{~d} z^{2}}-z\left|(x-z)^{-1}\right\rangle_{A i}=1 . \tag{10}
\end{equation*}
$$

Standard manipulations based on the method of variation of constants lead to the following general solution of equation (10),

$$
\begin{equation*}
\left\langle(x-z)^{-1}\right\rangle_{A i}=\left[a-\pi \int_{0}^{z} \mathrm{~d} t \operatorname{Bi}(t)\right] A i(z)+\left[b+\pi \int_{0}^{z} \mathrm{~d} t \operatorname{Ai}(t)\right] B i(z) \tag{11}
\end{equation*}
$$

in terms of the regular and irregular Airy functions, with a, b complex integration constants.

The most obvious way for determining the constants a, b involves the solution of the following linear equation set,

$$
\begin{align*}
{\left[\left\langle(x-z)^{-1}\right\rangle_{A i}\right]_{z=0} } & =a A i(0)+b B i(0) \\
{\left[\frac{\mathrm{d}\left\langle(x-z)^{-1}\right\rangle_{A i}}{\mathrm{~d} z}\right]_{z=0} } & =a A i^{\prime}(0)+b B i^{\prime}(0) \tag{12}
\end{align*}
$$

(the primed quantity $f^{\prime}(z)$ denotes first derivative $\mathrm{d} f(z) / \mathrm{d} z$). Here, $\operatorname{Ai}(0)=3^{-3 / 2} /$ $\Gamma(2 / 3), B i(0)=\sqrt{3} A i(0), A i^{\prime}(0)=-3^{-1 / 3} / \Gamma(1 / 3), B i^{\prime}(0)=-\sqrt{3} A i^{\prime}(0)($ with $\Gamma(z)$ gamma function of argument z) [4] and

$$
\begin{align*}
{\left[\left\langle(x-z)^{-1}\right\rangle_{A i}\right]_{z=0} } & =\mathrm{i} \int_{0}^{\infty} \mathrm{d} y \mathrm{e}^{\mathrm{i} y^{3} / 3}, \\
{\left[\frac{\mathrm{~d}\left\langle(x-z)^{-1}\right\rangle_{A i}}{\mathrm{~d} z}\right]_{z=0} } & =-\int_{0}^{\infty} \mathrm{d} y y \mathrm{e}^{\mathrm{i} y^{3} / 3} . \tag{13}
\end{align*}
$$

If the exponential figuring in the integrands of equation (13) is interpreted as $\exp \left(i y^{3} / 3\right)$ $=\lim _{\varepsilon \rightarrow 0^{+}} \exp \left[-(\varepsilon-\mathrm{i} / 3) y^{3}\right]$, from the general result $\int_{0}^{\infty} \mathrm{d} y y^{\nu-1} \exp \left(-\mu y^{p}\right)=$ $(1 /|p|) \Gamma(\nu / p) /(\mu)^{v / p}(\operatorname{Re} v>0)[15]$, one obtains

$$
\begin{align*}
{\left[\left\langle(x-z)^{-1}\right\rangle_{A i}\right]_{z=0} } & =3^{-2 / 3} \Gamma\left(\frac{1}{3}\right) \exp \left(\frac{2 \mathrm{i} \pi}{3}\right), \tag{14}\\
{\left[\frac{\mathrm{d}\left\langle(x-z)^{-1}\right\rangle_{A i}}{\mathrm{~d} z}\right]_{z=0} } & =-3^{-1 / 3} \Gamma\left(\frac{2}{3}\right) \exp \left(\frac{\mathrm{i} \pi}{3}\right)
\end{align*}
$$

and, finally, $a=\pi \mathrm{i}, b=-\pi / 3$. Therefore,

$$
\begin{equation*}
\left\langle(x-z)^{-1}\right\rangle_{A i}=\pi \mathrm{i}\left\{\left[1+\mathrm{i} \int_{0}^{z} \mathrm{~d} t B i(t)\right] A i(z)+\mathrm{i}\left[\frac{1}{3}-\int_{0}^{z} \mathrm{~d} t A i(t)\right] B i(z)\right\}, \tag{15}
\end{equation*}
$$

a result that can be expressed compactly in the alternative form

$$
\begin{equation*}
\left\langle(x-z)^{-1}\right\rangle_{A i}=\pi \mathrm{i}[A i(z)+\mathrm{i} G i(z)], \tag{16}
\end{equation*}
$$

involving the Airy function $\operatorname{Gi}(z)$ [4], sometimes referred to as inhomogeneous Airy function [16]. $\operatorname{Gi}(z)$ is, in fact, the solution to the inhomogeneous Airy equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} G i(z)}{\mathrm{d} z^{2}}-z G i(z)=-\pi^{-1} \tag{17}
\end{equation*}
$$

satisfying the boundary conditions $\operatorname{Gi}(0)=A i(0) / \sqrt{3}, G i^{\prime}(0)=-A i^{\prime}(0) / \sqrt{3}[4,16]$. The complex variable function $K(z)=A i(z)+\mathrm{i} G i(z)$ has already been demonstrated to play a role in theoretical Raman scattering investigations using the reflection approximation $[10,16]$. To this regard, we point out incidentally that efficient algorithms for evaluating homogeneous and inhomogeneous Airy functions of complex argument are available [16-19].

The second application considered in this paper follows from equation (5) by the choice $f(x)=(x-z)^{-1} A i(x)$, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x \frac{A i^{2}(x)}{x-z}=\left\langle(x-z)^{-1} A i(x)\right\rangle_{A i} . \tag{18}
\end{equation*}
$$

This integral is basically involved in the demonstration of the orthonormality properties of the Airy DVR basis functions $F_{n}(x)=(-1)^{n}\left(x-z_{n}\right)^{-1} A i(x)$ [14].

The Airy averaging required by equation (18) can be carried out on the basis of the same procedure adopted in the former example. In place of equation (8), we have

$$
\begin{equation*}
\left\langle(x-z)^{-1} A i(x)\right\rangle_{A i}=\mathrm{i} \int_{-\infty}^{0} \mathrm{~d} y \mathrm{e}^{-\mathrm{i} z y}\left\langle\mathrm{e}^{\mathrm{i} y x} A i(x)\right\rangle_{A i} \tag{19}
\end{equation*}
$$

whose validity is easily verified if $\operatorname{Im} z>0$. From the result [1],

$$
\begin{equation*}
\left\langle\mathrm{e}^{\mathrm{i} y x} A i(x)\right\rangle_{A i}=(4 \pi \mathrm{i} y)^{-1 / 2} \exp \left(-\frac{\mathrm{i} y^{3}}{12}\right) \tag{20}
\end{equation*}
$$

we obtain in a straightforward way

$$
\begin{align*}
w(z) \equiv\left\langle(x-z)^{-1} A i(x)\right\rangle_{A i} & =\frac{1}{2}\left(\frac{\mathrm{i}}{\pi}\right)^{1 / 2} \int_{-\infty}^{0} \mathrm{~d} y \frac{\mathrm{e}^{-\mathrm{i} y^{3} / 12} \mathrm{e}^{-\mathrm{i} z y}}{y^{1 / 2}} \\
& =\frac{\mathrm{e}^{-\mathrm{i} \pi / 4}}{\sqrt{\pi}} \int_{0}^{\infty} \mathrm{d} \xi \mathrm{e}^{\mathrm{i} \xi^{6} / 12} \mathrm{e}^{\mathrm{i} \xi^{2} \xi^{2}} \tag{21}
\end{align*}
$$

Simple manipulations on $\mathrm{d}^{3} w(z) / \mathrm{d} z^{3}$ allow demonstrating that $w(z)$ satisfies the following homogeneous differential equation,

$$
\begin{equation*}
\frac{\mathrm{d}^{3} w(z)}{\mathrm{d} z^{3}}-4 z \frac{\mathrm{~d} w(z)}{\mathrm{d} z}-2 w(z)=0 \tag{22}
\end{equation*}
$$

that is recognized to be the same satisfied by products of Airy functions, whose linearly independent solutions are $A i^{2}(z), A i(z) B i(z)$ and $B i^{2}(z)[4]$.

The result for the Airy averaging involved, equation (21), can therefore be expressed in the general form

$$
\begin{equation*}
w(z)=a A i^{2}(z)+b A i(z) B i(z)+c B i^{2}(z) \tag{23}
\end{equation*}
$$

with a, b, c (complex) constants. The determination of these constants is carried out, as in the former case, by solving the linear set of algebraic equations,

$$
\begin{align*}
w(0) & =a A i^{2}(0)+b A i(0) B i(0)+c B i^{2}(0) \\
w^{\prime}(0) & =2 a A i(0) A i^{\prime}(0)+b\left[A i(0) B i^{\prime}(0)+A i^{\prime}(0) B i(0)\right]+2 c B i(0) B i^{\prime}(0), \tag{24}\\
w^{\prime \prime}(0) & =2 a\left[A i^{\prime}(0)\right]^{2}+2 b A i^{\prime}(0) B i^{\prime}(0)+2 c\left[B i^{\prime}(0)\right]^{2},
\end{align*}
$$

with the primes denoting derivation orders. The nth order derivative $w^{(n)}(z)$ at $z=0$ is easily calculated starting from equation (21),

$$
\begin{equation*}
w^{(n)}(0)=\frac{\mathrm{e}^{\mathrm{i}(\pi / 6)(4 n-1)}}{\sqrt{\pi}} 2^{2(n-1) / 3} \cdot 3^{(2 n-5) / 6} \Gamma\left(\frac{2 n+1}{6}\right) \tag{25}
\end{equation*}
$$

after interpreting $\mathrm{e}^{\mathrm{i} \xi^{6} / 12}$ as $\lim _{\varepsilon \rightarrow 0^{+}} \exp \left[-(\varepsilon-\mathrm{i} / 12) \xi^{6}\right]$, in perfect analogy with the procedure leading to equation (14). The solution of the linear equation set (24), with $w(0)$, $w^{\prime}(0), w^{\prime \prime}(0)$ provided by equation (25), yields $a=\pi \mathrm{i}, b=-\pi, c=0$, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x \frac{A i^{2}(x)}{x-z}=\left\langle(x-z)^{-1} A i(x)\right\rangle_{A i}=\pi \mathrm{i} A i(z)[A i(z)+\mathrm{i} B i(z)] . \tag{26}
\end{equation*}
$$

Equation (26) is a basic equality. The orthonormality of the Airy DVR basis functions $F_{n}(x)=(-1)^{n}\left(x-z_{n}\right)^{-1} \operatorname{Ai}(x)$ is, in fact, a simple consequence of such result [14].

Acknowledgements

This work has been supported by funds provided by Italian Consiglio Nazionale delle Ricerche (contributions Nos. CTB 9900939CT03 and 00.00650PF34) and Pisa University (fondi di Ateneo, ex 60\%, years 2000-2001).

References

[1] G.P. Arrighini, N. Durante and C. Guidotti, J. Math. Chem. 25 (1999) 93.
[2] B.G. Englert and J. Schwinger, Phys. Rev. A 29 (1984) 2339.
[3] B.G. Englert, Semiclassical Theory of Atoms, Lectures Notes in Physics, Vol. 300 (Springer, Heidelberg, 1988).
[4] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
[5] M.S. Child (ed.), Semiclassical Methods in Molecular Scattering and Spectroscopy (Reidel, Dordrecht, 1980).
[6] E.J. Heller, J. Chem. Phys. 68 (1978) 2066.
[7] A.D. Bandrauk and J.-P. Laplante, Can. J. Chem. 55 (1977) 1333.
[8] A.D. Bandrauk and J.-P. Laplante, J. Chem. Phys. 65 (1976) 2592.
[9] S.-Y. Lee and E.J. Heller, J. Chem. Phys. 71 (1979) 4777.
[10] M.L. Sink and A.D. Bandrauk, Chem. Phys. 33 (1978) 205.
[11] J.C. Light and T. Carrington, Jr., Adv. Chem. Phys. 114 (2000) 263.
[12] R.G. Littlejohn, M. Cargo, T. Carrington, Jr., K. Mitchell and B. Poirier, J. Chem. Phys. 116 (2002) 8691.
[13] R.G. Littlejohn and M. Cargo, J. Chem. Phys. 117 (2002) 27.
[14] R.G. Littlejohn and M. Cargo, J. Chem. Phys. 117 (2002) 37.
[15] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1965).
[16] S.-Y. Lee, J. Chem. Phys. 72 (1980) 332.
[17] R.G. Gordon, J. Chem. Phys. 51 (1969) 14.
[18] R.G. Gordon, J. Math. Phys. 9 (1968) 655.
[19] R.G. Gordon, J. Chem. Phys. 52 (1970) 6211.

[^0]: * Corresponding author. E-mail: sama@ dcci.unipi.it

