
Journal of Mathematical Chemistry Vol. 34, Nos. 1–2, July 2003 (© 2003)

More on the Airy averaging method
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The Airy averaging method illustrated in a previous paper [J. Math. Chem. 25 (1999) 93]
is a simple and effective procedure for dealing with mathematical expressions/manipulations
involving Airy functions. The potentiality of the method is emphasizd through a couple of
applications drawn from recent research advances in the field of the discrete variable repre-
sentation (DVR) basis sets.
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1. Introduction

In a recent paper involving two of the present authors [1], the utility of a mathemat-
ical procedure, named Airy averaging, has been illustrated by a number of simple appli-
cations. The procedure, devised by Schwinger and Englert and specifically exploited by
them to bring quantum improvements in the Thomas–Fermi atomic model [2,3], turns
out to be an effective, interesting approach that allows dealing with mathematical ma-
nipulations involving Airy functions [4].

The important role played by these special functions in various contexts is well
documented. Semiclassical scattering theory, molecular photodissociation and predis-
sociation, Raman scattering spectroscopy are only a few examples drawn from the less
recent literature [5–10]. More recently, a number of basic developments in the discrete
variable representation (DVR) field have been reported [11–14]. In particular, Airy func-
tions have been discussed in depth as a new DVR basis set endowed with advantageous
features, for instance to approach the solution of problems in quantum mechanical ap-
plications [14].

In this short paper we propose to extend farther our former review of Airy aver-
aging applications [1]. We shall demonstrate, in particular, that some results obtained
in [14] follow rather smoothly by our approach, without recourse to lengthy manipula-
tions. Limiting ourselves to summarize only a few essential points of the Airy averaging
method, we recall that the pair of linearly independent solutions of the homogeneous
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differential equation (z complex variable)

d2y(z)

dz2
− zy(z) = 0, (1)

denoted Ai(z) and Bi(z), are known as the regular and irregular Airy functions, respec-
tively [4]. The regular Airy function admits the following integral representation,

Ai(x) = 1

2π

∫ ∞
−∞

dy exp

[
−i

(
y3

3
+ xy

)]
, (2)

from which one obtains in a straightforward way the Fourier transform∫ ∞
−∞

dx Ai(x)eiyx = exp

(
−i
y3

3

)
. (3)

As a special case of equation (3) we have∫ ∞
−∞

dx Ai(x) = 1. (4)

This result suggests formally the idea of a normalized Airy distribution. The Airy aver-
aging of a given function f (x) then follows immediately according to the definition

〈
f (x)

〉
Ai
≡
∫ ∞
−∞

dx f (x)Ai(x). (5)

As a consequence of this definition, the result of equation (3) can be expressed in the
form of Airy averaging as

〈
exp(iyx)

〉
Ai
= exp

(
−i
y3

3

)
. (6)

Equation (6), along with the linear nature of the Airy averaging mapping [1], con-
stitute the basis for the following applications.

2. Applications

As a first example of the formalism just summarized, we shall consider the Airy
averaging of the function f (x) = (x − z)−1, with z arbitrary complex number,

〈
(x − z)−1〉

Ai
≡
∫ ∞
−∞

dx
Ai(x)

x − z . (7)

The integrand Ai(x)(x−z)−1 plays an important role in recent theoretical work concern-
ing the Airy DVR basis set [14], a specific example in the more general discrete variable
representation problematics [12]. For z = zn, with {zn} countable sequence of roots
of Ai(z), in fact, the functions Fn(x) = (−1)nAi(x)(x − zn)−1 constitute an orthonor-
mal basis, in terms of which, for example, the diagonalization of a given Hamiltonian
operator can be set up.
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The recourse to the simple exchange of two integration orders (a consequence of
the linear nature of the Airy averaging mapping) allows re-expressing equation (7) in the
form

〈
(x − z)−1〉

Ai
= i

∫ 0

−∞
dy e−izy 〈eiyx 〉

Ai
, (8)

valid when Im z > 0. From equation (6), therefore,

〈
(x − z)−1〉

Ai
= i

∫ 0

−∞
dy e−izye−iy3/3. (9)

Starting from the latter result, it is a very simple exercise to verify that 〈(x−z)−1〉Ai

satisfies the inhomogeneous Airy equation

d2〈(x − z)−1〉Ai

dz2
− z〈(x − z)−1〉

Ai
= 1. (10)

Standard manipulations based on the method of variation of constants lead to the follow-
ing general solution of equation (10),

〈
(x − z)−1

〉
Ai
=
[
a − π

∫ z

0
dt Bi(t)

]
Ai(z)+

[
b + π

∫ z

0
dt Ai(t)

]
Bi(z), (11)

in terms of the regular and irregular Airy functions, with a, b complex integration con-
stants.

The most obvious way for determining the constants a, b involves the solution of
the following linear equation set,

[〈
(x − z)−1

〉
Ai

]
z=0= aAi(0)+ bBi(0),

(12)[
d〈(x − z)−1〉Ai

dz

]
z=0

= aAi ′(0)+ bBi ′(0)

(the primed quantity f ′(z) denotes first derivative df (z)/dz). Here, Ai(0) = 3−3/2/

�(2/3), Bi(0) = √3Ai(0), Ai ′(0) = −3−1/3/�(1/3), Bi ′(0) = −√3Ai ′(0) (with �(z)
gamma function of argument z) [4] and

[〈
(x − z)−1

〉
Ai

]
z=0= i

∫ ∞
0

dy eiy3/3,

(13)[
d〈(x − z)−1〉Ai

dz

]
z=0

=−
∫ ∞

0
dy yeiy3/3.
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If the exponential figuring in the integrands of equation (13) is interpreted as exp(iy3/3)
= limε→0+ exp[−(ε − i/3)y3], from the general result

∫∞
0 dy yν−1 exp(−µyp) =

(1/|p|)�(ν/p)/(µ)ν/p (Re ν > 0) [15], one obtains

[〈
(x − z)−1

〉
Ai

]
z=0= 3−2/3�

(
1

3

)
exp

(
2iπ

3

)
,

(14)[
d〈(x − z)−1〉Ai

dz

]
z=0

= −3−1/3�

(
2

3

)
exp

(
iπ

3

)

and, finally, a = π i, b = −π/3. Therefore,

〈
(x − z)−1

〉
Ai
= π i

{[
1+ i

∫ z

0
dt Bi(t)

]
Ai(z)+ i

[
1

3
−
∫ z

0
dt Ai(t)

]
Bi(z)

}
, (15)

a result that can be expressed compactly in the alternative form〈
(x − z)−1

〉
Ai
= π i

[
Ai(z)+ iGi(z)

]
, (16)

involving the Airy function Gi(z) [4], sometimes referred to as inhomogeneous Airy
function [16]. Gi(z) is, in fact, the solution to the inhomogeneous Airy equation

d2Gi(z)

dz2
− zGi(z) = −π−1, (17)

satisfying the boundary conditions Gi(0) = Ai(0)/
√

3, Gi ′(0) = −Ai ′(0)/
√

3 [4,16].
The complex variable function K(z) = Ai(z) + iGi(z) has already been demonstrated
to play a role in theoretical Raman scattering investigations using the reflection approx-
imation [10,16]. To this regard, we point out incidentally that efficient algorithms for
evaluating homogeneous and inhomogeneous Airy functions of complex argument are
available [16–19].

The second application considered in this paper follows from equation (5) by the
choice f (x) = (x − z)−1Ai(x), so that∫ ∞

−∞
dx

Ai 2(x)

x − z =
〈
(x − z)−1Ai(x)

〉
Ai
. (18)

This integral is basically involved in the demonstration of the orthonormality properties
of the Airy DVR basis functions Fn(x) = (−1)n(x − zn)−1Ai(x) [14].

The Airy averaging required by equation (18) can be carried out on the basis of the
same procedure adopted in the former example. In place of equation (8), we have

〈
(x − z)−1Ai(x)

〉
Ai
= i

∫ 0

−∞
dy e−izy

〈
eiyxAi(x)

〉
Ai
, (19)

whose validity is easily verified if Im z > 0. From the result [1],

〈
eiyxAi(x)

〉
Ai
= (4π iy)−1/2 exp

(
− iy3

12

)
, (20)
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we obtain in a straightforward way

w(z) ≡ 〈(x − z)−1Ai(x)
〉
Ai
= 1

2

(
i

π

)1/2 ∫ 0

−∞
dy

e−iy3/12e−izy

y1/2

= e−iπ/4

√
π

∫ ∞
0

dξ eiξ6/12eizξ2
. (21)

Simple manipulations on d3w(z)/dz3 allow demonstrating that w(z) satisfies the
following homogeneous differential equation,

d3w(z)

dz3
− 4z

dw(z)

dz
− 2w(z) = 0, (22)

that is recognized to be the same satisfied by products of Airy functions, whose linearly
independent solutions are Ai 2(z), Ai(z)Bi(z) and Bi 2(z) [4].

The result for the Airy averaging involved, equation (21), can therefore be ex-
pressed in the general form

w(z) = aAi 2(z)+ bAi(z)Bi(z)+ cBi 2(z) (23)

with a, b, c (complex) constants. The determination of these constants is carried out, as
in the former case, by solving the linear set of algebraic equations,

w(0)= aAi 2(0)+ bAi(0)Bi(0)+ cBi 2(0),

w′(0)= 2aAi(0)Ai ′(0)+ b[Ai(0)Bi ′(0)+ Ai ′(0)Bi(0)
]+ 2cBi(0)Bi ′(0), (24)

w′′(0)= 2a
[
Ai ′(0)

]2 + 2bAi ′(0)Bi ′(0)+ 2c
[
Bi ′(0)

]2
,

with the primes denoting derivation orders. The nth order derivative w(n)(z) at z = 0 is
easily calculated starting from equation (21),

w(n)(0) = ei(π/6)(4n−1)

√
π

22(n−1)/3 · 3(2n−5)/6�

(
2n+ 1

6

)
(25)

after interpreting eiξ6/12 as limε→0+ exp[−(ε− i/12)ξ 6], in perfect analogy with the pro-
cedure leading to equation (14). The solution of the linear equation set (24), with w(0),
w′(0), w′′(0) provided by equation (25), yields a = π i, b = −π , c = 0, so that

∫ ∞
−∞

dx
Ai 2(x)

x − z =
〈
(x − z)−1Ai(x)

〉
Ai
= π iAi(z)

[
Ai(z)+ iBi(z)

]
. (26)

Equation (26) is a basic equality. The orthonormality of the Airy DVR basis func-
tions Fn(x) = (−1)n(x−zn)−1Ai(x) is, in fact, a simple consequence of such result [14].
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